FROM COSMIC BIRTH TO LIVING EARTHS

THE FUTURE OF UVOIR SPACE ASTRONOMY

Matt Mountain

Sara Seager

Speakers

David Schiminovich

Michael Shara

Jason Tumlinson

Matt Mountain

Sara Seager

Dr. Matt Mountain President Associated Universities for Research in Astronomy

Speakers

David Schiminovich

Science The Endless Frontier

A Report to the President by Vannevar Bush, Director of the Office of Scientific Research and Development, uly 1945

The National Science Foundation

Science The Endless Frontier

A Report to the President by Vannevar Bush, Director of the Office of Scientific Research and Development, uly 1945

AURA

Kitt Peak National Observatory The Association of Universities for Research in Astronomy

transformative science enabled by the Space Program

The James Webb Space Telescope to launch in 2018

HST and Beyon

AURA

Exploration and the Search for Origins:

violet-Optical-Infrared

Space Astronom

AURA Report circa. 1996

"assess future space-based options ... that can significantly advance our understanding of the origin and evolution of the cosmos and the life within it."

AURA Committee

Julianne Dalcanton, co-chair University of Washington

Suzanne Aigrain University of Oxford

Steve Battel Battel Engineering, Inc.

Niel Brandt Pennsylvania State University

Charlie Conroy Harvard University

Lee Feinberg NASA, Goddard Space Flight Center

Suvi Gezari University of Maryland, College Park

Olivier Guyon University of Arizona / NAOJ

Walt Harris University of Arizona / LPL

AURA Committee

Sara Seager, co-chair Massachusetts Institute of Technology

> Chris Hirata The Ohio State University

John Mather NASA, Goddard Space Flight Center

Marc Postman Space Telescope Science Institute

Dave Redding Jet Propulsion Laboratory / Caltech

> David Schiminovich Columbia University

H. Philip Stahl NASA, Marshall Space Flight Center

lason Tumlinson Space Telescope Science Institute

Matt Mountain

Sara Seager

Prof. Sara Seager Professor of Planetary Science and Physics Massachusetts Institute of Technology

Speakers

David Schiminovich

Where Did We Come From?

Are We Alone?

Earth as an Exoplanet

Earth as seen from Voyager I, from 4 billion miles away

Oxygen and ozone

Optical

+

Earth's Spectrum

"Vegetation jump"

Visible Infrared

Near Infrared

Image credit: : M. Turnbull and STScI

To find dozens of potential Earths, hundreds of stars must be searched, motivating a 12 m class telescope.

To find dozens of potential Earths, hundreds of stars must be searched, motivating a 12 m class telescope.

Starlight Suppression

Why a Large Telescope? Zoitable Zone

Inner Working Angle

Exoplanets detectable here

No exoplanets detected within this region

No telescope has ever obtained a spectrum of an object as faint as a typical exoEarth

HDST 12 meters

Hubble

TESS

WFIRST

Many telescopes existing or under construction will have a chance at finding one to a few exoEarths.

JWST

Only HDST will purposely make the search and yield a spectacular harvest.

Jupiter

Earth

HDST will survey planetary systems, including discovery and study of giant planets and dust belts.

A twin of our solar system at 30 light years as seen with a possible HDST coronagraph.

Image Credit: L. Peuyo (STScI)

Stars with Potentially Habitable Planets Stars with an Earth-like Planet Observable with HDST

Matt Mountain

Sara Seager

Speakers

David Schiminovich

Prof. David Schiminovich Professor of Astrophysics Columbia University

Observatory TechnologyUltravioletVisibleNear infraredMid infrared

1

First Large Space Telescope

Observatory TechnologyUltravioletVisibleNear infraredMid infrared

Hubble

First Cold (Infrared-Optimized) Segmented Space Telescope

HDST

Observatory Technology Near infrared Mid infrared

First Large Aperture Telescope with Advanced Instrumentation

JWST

Advanced Instrumentation Starlight Suppression

Advanced Instrumentation Starlight Suppression

Starlight Suppression: Past

Image Credit: Nakajima, et al. (1995)

Required Suppression

I,000 Million Billion Past

Trillion

Starlight Suppression: Present

Image Credit: Marois, et al. (2010)

Starlight Suppression: Future

Starlight Suppression: Progress HDST-Specific Designs for Segmented Mirrors

Starlight Suppression: Progress HDST-Specific Designs for Segmented Mirrors

N'Daiye, et al. (2015), Guyon (2015) and Lyon, et al. (2015)

Stability Past

Required Suppression

1,000 **Present**/ Ground Million No Stabilization HDS Billion Trillion 0.1" ,, Star-Planet Separation

Starlight Suppression: Progress

Stability

Sun-Earth L2 Orbit

L2: 1,500,000 km

Sunshade

Stability Stability

Active Mirror Technology

Starshade Technology

Image Credit: Kuchner (2015)

Leveraging JWST

Leveraging JWST

exoEarths

Large Collecting Area

exoEarths

Large Collecting Area

Transform Astronomy in the 21st Century

HDST Instruments

Narrow Field

exoEarth Starlight Suppression

UV Spectra

Wide Field

Imaging

Spectra

HDST Instruments

Narrow Field

exoEarth Starlight Suppression

Simultaneous Observing

UV Spectra

Wide Field

Imaging

Spectra

HDST Detectors

GALEX MCP

WFC3 UVIS

Euclid Vis CCD

LSST CCD 3 Gp (0.6 m)

GAIA CCD 1 Gp (1 m x 0.4 m)

Dream Big, but Dream Smart

Flight Technologies

Technology Development

Room-Iemperature Telescope Liquid Water 🔺 "HDST Earth

Liquid ----- Pluto Nitrogen

15-20 years prior to launch

The Path Forward 2024 2019 Other Telescope Starlight Current Technologies Tech

Sid

Transform Astronomy

Matt Mountain

Sara Seager

Prof. Julianne Dalcanton Professor of Astronomy University of Washington

Speakers

David Schiminovich

he search for life here...

understanding of life's origins, Here.

A shared origin story, told by HDST

...comes complexity, and us.

Intergalactic gas

Dark Matter

Starbirth

Planetary nurseries

Revolutionary Technology Brings Revolutionary Science

Brings Revolutionary Science Rarer

Revolutionary Technology Farther

Image Credit: Ceverino/Moody/Snyder

The First Revolution

A Milky Way-like galaxy 10 billion years ago

The First Revolution

Image Credit: Ceverino/Moody/Snyder

A Milky Way-like galaxy 10 billion years ago

Hubble

The First Revolution

Image Credit: Ceverino/Moody/Snyder

Hubble

More Sensitivity More Clarity

JWST 6.5 m

12 m

More Sensitivity

12 m

More Sensitivity

SDTV 720 x 480

25x image sharpness

25x pixel density

UltraHD 3820 x 2160

The Next Revolution

From Hubble to...

Image Credit: Ceverino/Moody/Snyder

...the Universe in High-Def

Image Credit: Ceverino/Moody/Snyder

HDST

The building blocks of galaxies

325 light-years 100 parsecs

The building blocks of galaxies

325 light-years 100 parsecs

/...anywhere in the Universe

200 light years

~ 25 Days

Hubble

A Few Hours

Every exoplanet ...makes another observation...

deep field

Every exoplanet ...makes another observation...

deep field

For free.

A Few Hours

1.00

The only way to know, is to look.

Many Days?

1. C. A.

The Cosmic Web

0

Intergalactic Gas

Tracers of Galaxy Formation & Dark Matter

Stars in Motion

A Decade of Motion

Hubble

HDST

A Decade of Motion

Hubble

HDST

The Universe Nearby

>400 km in radius

>200 km in radius

12

>50 km in radius

Major Planets

>400 km in radius >200 km in radius >50 km in radius

>400 km in radius

>50 km in radius

Moons of Major Planets

The Outer Limits

Image Credit: Alex Parker

The Outer Limits

Image Credit: Alex Parker

Image Credit: Alex Parker

The outer limits

0

The Dynamic Solar System

2014 WFC3/UVIS

Weather

Aurorae

"Geysers"

>400 km in radius

>200 km in radius (sy)

>50 km in radius

5 or more visits to host planet >50 km in radius

>200 km in radius

>50 km in radius

3 visits to host planet

>200 km in radius

>50 km in radius

2 visits to host planet

visit to host planet >200 km in radius >50 km in radius

Hubble

Surface features on Pluto+Charon

Pluto

Charon

Hubble

Surface features on Pluto+Charon

Pluto

Hubble

Surface features on Pluto+Charon

Pluto

New Horizons Two weeks out

Hubble

Surface features on Pluto+Charon

Pluto

What will HDST do?

What will HDST do?

... observe structures the size of Manhattan at the orbit of Jupiter...

... track dark matter in the smallest, densest galaxies, by watching the motion of stars...

...map the nearly invisible diffuse gas that feeds the growth of galaxies...

... detect every starforming galaxy during the epoch when the Milky Way was forming...

... resolve every galaxy in the Universe into its smallest building blocks.

... unravel planet formation with hundreds of characterized systems...

... detect dozens of Earth-like planets to search for evidence of life.

Drive revolutions across astrophysics

What will HDST do?

Answer profound questions.

What will HDST do?

Your children's " Hereiter Hereit

Matt Mountain

Sara Seager

Speakers

David Schiminovich

Panelists

Michael Shara

Jason Tumlinson